DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage

نویسندگان

  • Timothy P. Wakeman
  • Aimin Yang
  • Naresh S. Dalal
  • Rebecca J. Boohaker
  • Qinghua Zeng
  • Qiang Ding
  • Bo Xu
چکیده

Hexavalent chromium (Cr[VI]) is associated with occupational lung cancer and poses a significant public health concern. When exposed to Cr[VI], cells rapidly internalize this compound and metabolize it to Cr[III]. Byproducts of Cr[VI] metabolism include unstable Cr[V] and Cr[IV] intermediates that are believed to be directly responsible for the genotoxicity and carcinogenicity caused by Cr[VI] exposure; however, the carcinogenic potential of the Cr intermediates and the mechanisms of Cr-induced carcinogenesis remain to be further defined. Utilizing synthetic Cr[IV] and Cr[V] compounds, we demonstrate here that Cr[IV] or Cr[V] exposure induces DNA double-strand breaks; however, of the two compounds, mammalian cells only respond to Cr[V]-induced DNA damage. Exposure to Cr[V], but not Cr[IV], results in initiation of cell cycle checkpoints and activates the ATM kinase, a critical regulator of the DNA damage response. Furthermore, cells exposed to Cr[IV] have significantly increased mutation frequencies in the HPRT gene compared to cells exposed to Cr[V], indicating that Cr[IV] possesses a higher mutagenic potential than Cr[V]. We also find that MLH1, a critical mismatch repair (MMR) protein, is required for activation of the G2/M cell cycle checkpoint in response to Cr[VI] exposure and to limit Cr-induced mutagenesis. Our results provide evidence for Cr[IV] as the ultimate mutagenic intermediate produced during Cr[VI] metabolism and indicate that functional MMR is crucial in the cellular response to chromium exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential involvement of the human mismatch repair proteins, hMLH1 and hMSH2, in transcription-coupled repair.

Defects in DNA mismatch repair have been associated with both hereditary and sporadic forms of cancer. Recently, it has been shown that human cell lines deficient in mismatch repair were also defective in the transcription-coupled repair (TCR) of UV-induced DNA damage. We examined whether TCR of ionizing radiation-induced DNA damage also requires the genes involved in DNA mismatch repair. Cells...

متن کامل

Human MLH1 Protein Participates in Genomic Damage Checkpoint Signaling in Response to DNA Interstrand Crosslinks, while MSH2 Functions in DNA Repair

DNA interstrand crosslinks (ICLs) are among the most toxic types of damage to a cell. For this reason, many ICL-inducing agents are effective therapeutic agents. For example, cisplatin and nitrogen mustards are used for treating cancer and psoralen plus UVA (PUVA) is useful for treating psoriasis. However, repair mechanisms for ICLs in the human genome are not clearly defined. Previously, we ha...

متن کامل

High affinity cooperative DNA binding by the yeast Mlh1-Pms1 heterodimer.

We demonstrate here that the Saccharomyces cerevisiae Mlh1-Pms1 heterodimer required for DNA mismatch repair and other cellular processes is a DNA binding protein. Binding was evaluated using a variety of single and double-stranded DNA molecules. Mlh1-Pms1 bound short substrates with low affinity and showed a slight preference for single-stranded DNA. In contrast, Mlh1-Pms1 exhibited a much hig...

متن کامل

MSH3 Mismatch Repair Protein Regulates Sensitivity to Cytotoxic Drugs and a Histone Deacetylase Inhibitor in Human Colon Carcinoma Cells

BACKGROUND MSH3 is a DNA mismatch repair (MMR) gene that undergoes frequent somatic mutation in colorectal cancers (CRCs) with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown. METHODS We utilized isogenic HCT116 (MLH1-/MSH3-) cells w...

متن کامل

Ascorbate acts as a highly potent inducer of chromate mutagenesis and clastogenesis: linkage to DNA breaks in G2 phase by mismatch repair

Here we examined the role of cellular vitamin C in genotoxicity of carcinogenic chromium(VI) that requires reduction to induce DNA damage. In the presence of ascorbate (Asc), low 0.2-2 microM doses of Cr(VI) caused 10-15 times more chromosomal breakage in primary human bronchial epithelial cells or lung fibroblasts. DNA double-strand breaks (DSB) were preferentially generated in G2 phase as det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017